

Jacques Jumeau

Technologie des composants utilisés dans le chauffage.

Chapitre 7

Protection de l'aluminium contre la corrosion

La résistance à la corrosion de l'aluminium Composition chimique de l'alliage standard utilisé

Norme	Si	Cu	Mg	Zn	Mn	Fe	Ni	Sn	Ti	Al
ADC12 (JIS H5302:2000)	9.6-12.0	1.5-3.5	< 0.3	<1.0	<0.5	0.6-0.9	<0.5	<0.2	-	Reste

Résistance générale à la corrosion en applications extérieures des boitiers en aluminium

Généralités sur la corrosion de l'aluminium

L'aluminium et les alliages ont en général une bonne tenue à la corrosion atmosphérique, en milieu marin, urbain, industriel. Moulés sous pression, les boitiers offrent de nombreuses possibilités de formes et de traitements de la surface, demandent peu d'entretien et résistent bien dans le temps. De plus, dans une optique de développement durable, l'aluminium est un des métaux dont le recyclage est le plus économique. La refusion de l'aluminium ne représente que 5% de l'énergie nécessaire à l'élaboration du métal à partir du minerai. L'aluminium se recouvre naturellement d'une couche d'oxyde, qui le protège le plus souvent contre la corrosion. Dans les solutions aqueuses neutres (4 < pH < 9), ce film d'oxyde a une épaisseur de 50 Å et protège le métal (passivation). L'aluminium n'est corrodé de manière homogène que dans une solution très acide, ou dans une solution alcaline. La résistance et la stabilité de la couche d'oxyde dépendent du milieu ambiant, de la composition de l'alliage et de la structure microscopique du métal (en fonction des traitements thermiques appliqués). Le comportement électrochimique de l'aluminium est influencé par le film d'oxyde naturel qui régit la tenue à la corrosion de l'aluminium.

Les boitiers sont massifs et à parois épaisses (2 à 4mm); la corrosion est alors superficielle et affecte seulement l'aspect, sans modifier la tenue mécanique. Dans les milieux neutres, la vitesse de corrosion générale des alliages d'aluminium passivés est certes très réduite, mais elle n'est néanmoins jamais totalement nulle. Elle garde ainsi une valeur de l'ordre de 5 µm par an, ce qui peut entraîner à la longue une évolution progressive de l'état de surface vers un aspect inesthétique dû à une variation de la rugosité (peau d'orange).

L'altération la plus courante se présente plutôt sous forme d'une corrosion par piqure qui se développe sous forme de cavités de profondeurs variables. Il s'agit d'un phénomène très complexe, dont le mécanisme n'est pas totalement déterminé.

Dans des milieux industriels courants, les boitiers en aluminium peuvent donc être utilisés sans traitement de surface autre que l'ébavurage et la trovalisation standard.

Corrosion galvanique ou corrosion bimétallique de l'aluminium

Les boitiers en aluminium peuvent être soumis à un phénomène particulier qui réduit leur durée de vie, peut aller jusqu'à la perforation de l'enveloppe ou au blocage complet des vis de fermeture. C'est la corrosion galvanique ou bimétallique. Bien que la plupart des normes précisent que des protections appropriées doivent être prises pour éviter la corrosion galvanique sur les boitiers en aluminium, aucune ne préconise de solution ou n'impose de matière ou de composition précise des alliages. Cependant, même si l'aluminium est dans une position défavorable dans l'échelle galvanique, il est le plus souvent recouvert de son film passif, ce qui l'anoblit considérablement et le rend beaucoup moins sensible à la corrosion.

La corrosion galvanique est un phénomène électrochimique qui se produit entre deux métaux différents, lorsque ceux-ci sont en contact, et en présence d'un liquide conducteur (eau, eau de mer) qui assure le contact électrique entre les deux métaux. Ce phénomène provoquera une corrosion supplémentaire à celle pouvant survenir par d'autres phénomènes et sur des métaux non couplés, et sa progression est en général nettement plus rapide.

Il apparaît une différence de potentiel entre les deux métaux qui dépend à la fois du métal et de la solution. Deux métaux ou deux alliages différents au contact avec le même milieu prennent en général deux potentiels différents. Si ces deux métaux

sont reliés électriquement, leur différence de potentiel donne naissance à des réactions électrochimiques et à la circulation d'un courant électrique.

Le métal le plus négatif (le moins noble) est polarisé positivement et le métal le plus positif est polarisé négativement. Dans la très grande majorité des cas, cette configuration correspond à une augmentation de la vitesse de corrosion du métal le plus corrodable (le plus négatif), et à une diminution de la vitesse de corrosion du métal le moins corrodable (le plus positif).

La corrosion galvanique n'apparait que si les 4 conditions suivantes sont réunies et simultanées:

- A: <u>Un pontage par un liquide conducteur (Electrolyte) entre les deux métaux.</u> Lorsque la conductibilité de l'électrolyte est faible, la corrosion est localisée aux zones de contact entre les deux métaux. Lorsque la conductivité de l'électrolyte augmente, la surface corrodée augmente.
- B: <u>Un contact électrique entre les deux métaux.</u>

Si le contact électrique n'est pas établi entre les deux métaux par l'interposition d'un isolant (oxyde d'aluminium, phosphatation, peinture, huile, etc.), le courant ne circulant pas, il n'y a pas de corrosion.

- C: <u>Une différence de potentiel entre les métaux produisant un courant galvanique significatif.</u>

Plus cette valeur est importante, plus la force électromotrice du phénomène est grande. Une différence de plusieurs centaines de millivolts résultera en une forte corrosion galvanique, alors qu'une différence inférieure à 200-300mV n'aura pas de conséquences importantes. Ces potentiels de corrosion galvanique sont donnés par une table qui donne le potentiel électrique des métaux, habituellement mesuré par une technique dite "Standard Calomel Electrode (S.C.E.)". (Voir ci-dessous).

- D: <u>Une réaction cathodique durable sur le plus noble des deux métaux.</u>

Le rapport des surfaces des deux métaux

- Le cas le plus défavorable est celui d'une grande surface cathodique (matériau le plus positif) électriquement reliée à une petite surface anodique (métal le plus négatif). La vitesse de corrosion du métal le plus négatif peut être multipliée par 100 voir par 1000.

Par exemple, des vis en acier inoxydable fermant un boitier en aluminium seront peu sujettes à corrosion en raison des différences de surfaces.

Corrosion du métal noble, et influence des sels produits par sa corrosion

- La résistance à la corrosion du métal le plus noble, indépendamment de son potentiel, influe de façon considérable sur le comportement du couple bimétallique. Si le métal le plus noble se corrode, ses produits de corrosion risquent, par déplacement, d'accélérer la corrosion du métal le plus corrodable. Par exemple, le cuivre, pourtant considéré comme métal noble et dont le couple galvanique avec l'aluminium est peu important, produit des oxydes qui peuvent corroder l'aluminium, ce qui est un paramètre critique lors de la conception de borniers de terre sur des boitiers en aluminium pouvant recevoir des conducteurs en cuivre.

Revêtements métalliques sacrificiels

Par application sur l'élément cathodique d'un revêtement sacrificiel ayant un potentiel similaire à celui de l'élément anodique, la corrosion galvanique est fortement diminuée.

Régles à respecter:

- L'élément sacrificiel doit être du côté anodique et plus petit.
- La couche de revêtement doit être intacte, sans fissures ou manques.

Exemple:

- <u>Zingage</u> sur de la visserie en acier utilisée sur de l'aluminium. Le zinc sera sacrifié au lieu de corroder l'aluminium (différence de potentiel 100 à 200 mV).

Attention:

Ne pas utiliser de visserie en acier <u>nickelé</u> en contact avec de l'aluminium. La différence de potentiel (450mV) entre le nickel et l'aluminium est trop élevée et

l'aluminium se corrodera.

Cas particulier de la corrosion galvanique entre acier inoxydable et aluminium

Les potentiels de corrosion des aciers inoxydables sont «cathodiques» et situés dans la zone "noble" et les potentiels de corrosion de l'aluminium sont "anodiques" et situés dans le zone "non-noble", avec une forte différence de potentiel. Cela signifie qu'il n'y aura pas de corrosion galvanique sur l'acier inoxydable lorsqu'il est placé en contact avec de l'aluminium alors que l'aluminium se corrodera.

Cependant, de grandes surfaces relatives d'aluminium en contact avec des surfaces faibles d'acier inoxydable peuvent être acceptables.

L'utilisation de visserie en acier inoxydable sur des pièces massives, plaques ou feuilles d'aluminium est normalement considérée comme sûre, contrairement à l'inverse.

Même en l'absence d'isolation entre les métaux, il y a peu de risques de corrosion dans un climat continental.

En revanche, dans un environnement marin, d'importantes corrosions par piqures localisées sur des taraudages aluminium ont été observées alors que des vis en acier inoxydables étaient utilisées.

Moyens mécaniques de prévention de la corrosion galvanique entre les boitiers en aluminium et des composants en acier inoxydable

- Dans la mesure du possible, isoler les deux matériaux à l'aide d'un matériau isolant électrique, comme du plastique.
- Éviter les zones où sont en contact des surfaces relativement petites de métal le moins noble (Aluminium) et de vastes zones du métal plus noble (acier inoxydable). NB: Le couplage d'une zone relativement large d'aluminium avec une faible surface d'une pièce en acier inoxydable crevassée peut provoquer une attaque rapide de la matière à l'intérieur de la crevasse et corroder l'acier inoxydable.
- Empêcher la présence électrolyte autour de la jonction bimétallique. Par exemple, si possible, peignez les deux métaux.
- Appliquez des inhibiteurs de corrosion sous les têtes de vis et sur les filetages.
- Appliquez un revêtement organique isolant sur les surfaces de contact avant l'assemblage.

Table des couples électrochimiques entre alliages d'aluminium (Noms surlignés en jaune et bleu) et d'autres métaux usuels, dans une solution d'eau saline à 2%.

Il n'y a pas d'apparition de corrosion notable lorsque la valeur du couple galvanique est inférieure à 300mV 300mV.

	Pt (Platinum/ Platine)	Au (Gold/ Or)	Ti (Titanium / Titane)	AISI 316L(passive/passif)	Ag (Silver/ Argent)	Ni (Nickel/ Nickel)	Ni Cu 30 (Monel 400)	NiCr15 Fe8 (Inconel 600)	Cu55 Zn23 Ni22 (Arcap)	Cu (Copper/ Cuivre)	Al10 Sn66 Pb34	Cu Zn34 (Brass/ Laiton)	Cu88 Sn12 (Bronze)	Sn (Tin/ Etain)	Pb (Lead / Plomb)	Al Cu Mg1(Duralumin)	Mild steel / Acier doux)	Al Si 10Mg (Alpax H)	Al 99.5 (Aluminum)	Hard steel/ Acier dur	Al Mg5 (Duralinox)	ADC12 (Aluminum alloy)	Cd (Cadmium/ Cadmium)	Fe (Steel / Fer)	Cr (Chromium/ Chrome)	Al Mg Si0.7 (Almasilium)	Sn75 Zn25	Zn (Zina/ Zina)	AI PVD (Physical vapor deposition)	Mg (Magnesium)
Pt (Platinum/ Platine)	0	130	250	250	350	430	430	430	450	570	600	650	770	800	840	940	1000	1065	1090	1095	1100	1100	1100	1105	1200	1200	1350	1400	1400	1900
Au (Gold/ Or)	130	0	110	110	220	300	300	300	320	410	470	520	610	670	710	810	870	935	960	965	970	970	970	975	1070	1070	1230	1270	1270	1820
Ti (Titanium / Titane)	250	110	0	0	110	180	180	180	200	320	350	400	520	550	590	690	750	815	840	845	850	850	850	855	950	950	1100	1150	1150	1700
AISI 316L(passive/passif)	250	110	0	0	110	180	180	180	200	320	350	400	520	550	590	690	750	815	840	845	850	850	850	855	950	950	1100	1150	1150	1700
Ag (Silver/ Argent)	350	220	100	100	0	80	80	80	100	220	250	300	420	450	490	590	650	715	740	745	750	750	750	755	850	850	1010	1050	1050	1600
Ni (Nickel/ Nickel)	430	300	180	180	80	0	0	0	20	110	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930	970	970	1520
Ni Cu 30 (Monel 400)	430	300	180	180	80	0	0	0	20	110	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930	970	970	1520
NiCr15 Fe8 (Inconel 600)	430	300	180	180	80	0	0	0	20	110	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930	970	970	1520
Cu55 Zn23 Ni22 (Arcap)	450	320	200	200	100	20	20	20	0	120	150	200	320	350	380	490	550	615	640	645	650	650	650	655	750	750	910	950	950	1500
Cu (Copper/ Cuivre)	570	440	320	320	220	140	140	140	120	0	30	80	200	230	270	370	430	495	520	525	530	530	530	535	630	630	780	830	830	1380
Al10 Sn66 Pb34	600	470	350	350	250	170	170	170	150	30	0	50	170	200	210	310	400	465	490	495	500	500	500	505	600	600	760	800	800	1350
Cu Zn34 (Brass/ Laiton)	650	520	400	400	300	220	220	220	200	80	50	0	120	150	190	290	350	415	410	445	450	450	450	455	550	550	710	750	750	1300
Cu88 Sn12 (Bronze)	770	640	520	520	420	340	340	340	320	200	170	120	0	30	70	170	230	295	320	325	330	330	330	335	430	430	590	630	630	1180
Sn (Tin/ Etain)	800	670	550	550	450	370	370	370	350	230	200	150	30	0	40	140	200	265	290	295	300	300	300	305	400	400	560	600	600	1150
Pb (Lead / Plomb)	840	710	590	590	490	410	410	410	380	270	240	190	70	40	0	100	160	225	250	255	260	260	260	265	360	360	520	660	560	1110
Al Cu Mg1(Duralumin)	940	810	690	690	590	510	510	510	490	370	340	290	170	140	100	0	60	125	150	155	160	160	160	165	260	260	420	560	560	1010
Mild steel / Acier doux)	1000	870	750	750	650	570	570	570	550	430	400	350	230	200	150	60	0	65	90	95	100	100	100	105	200	200	360	400	400	950
Al Si 10Mg (Alpax H)	1065	935	815	815	715	635	635	635	615	495	465	415	295	265	225	125	65	0	25	30	35	35	35	40	135	135	295	355	355	885
Al 99.5 (Aluminum)	1090	960	840	840	740	660	660	660	640	520	490	440	320	290	250	150	90	25	0	5	10	10	10	15	110	110	270	310	310	860
Hard steel/ Acier dur	1095	965	845	845	745	665	665	665	645	525	495	445	325	295	255	155	95	30	5	0	5	5	5	10	105	105	265	305	305	855
Al Mg5 (Duralinox)	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	850
ADC12 (Aluminum alloy)	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	850
Cd (Cadmium/ Cadmium	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	850
Fe (Steel / Fer)	1105	975	855	855	755	675	675	675	655	535	505	455	335	305	265	165	105	40	15	10	5	5	5	0	95	95	255	295	295	845
Cr (Chromium/ Chrome)	1200	1070	950	950	850	770	770	770	750	630	600	550	430	400	380	260	200	135	110	105	100	100	100	95	0	0	160	200	200	750
Al Mg Si0.7 (Almasilium)	1200	1070	950	950	850	770	770	770	750	630	600	550	430	400	380	260	200	135	110	105	100	100	100	95	0	0	160	200	200	750
Sn75 Zn25		1230	1110	1110	1010	930	930	930	910	790	760	710	590	650	520	420	360	295	270	265	260	260	260	225	160	160	0	40	40	590
Zn (Zinc/ Zinc)	1400	1270	1150	1150	1050	970	970	970	950	830	800	750	630	600	560	460	400	335	310	305	300	300	300	295	200	200	40	0	0	550
Zn Al4 (Zamak3/Zamac 3)	1400	1270	1150	1150	1050	970	970	970	950	830	800	750	630	600	560	460	400	335	310	305	300	300	300	295	200	200	40	0	0	550
Al PVD (Physical vapor deposition)	1400		1150	1150	1050	970	970	970	950	830	800	750	630	600	560	460	400	335	310	305	300	300	300	295	200	200	40	0	0	550
Mg (Magnesium)	1900	1820	1700	1700	1600	1600	1600	1600	1520	1500	1390	1300	1180	1150	1110	1010	950	885	860	850	850	850	850	845	845	845	590	560	560	0
0-300 m	ı۷				301	-500	m\	/			50	01-8	00 r	nV				> 8	00 n	nV										